Rajiv Gandhi University of Knowledge Technologies Basar

LABORATORYMANUAL SURVEYINGLAB

DEPARTMENT OF CIVIL ENGINEERING RGUKT BASAR

TELANGANA. -504107
IIIT Basar

1) Measurement of distance by ranging and chaining.
2) Locatingvariousobjectsbychain\&crossstaffsurveying.
3) Determinationofareaofpolygonbychainandcrossstaff survey.
4) Measurementofbearingsofsidesoftraversewithprismatic compass and computation of correct includedangle.
5) Locating given building by chain and compass traversing, (One full size drawing sheet)
6) Determinationofelevationofvariouspointswith Auto level bycollimationplanemethodandrise\&fallmethod.
7) Fixing bench mark with respect to temporary bench mark with Auto level by fly leveling and check levelling.
8) L-Section and cross section of road. (OnefullsizedrawingsheetforL-Sectionandcrosssection)
9) Measurementofhorizontalanglestheodolitebymethodof repetition.
10) Measurement of vertical angles with theodolite. (One full size drawing sheet)
11) Determination of horizontal distance between two inaccessible points withthedolite.
12) Locating given building by thedolite traversing. (One full size drawing sheet)
13) Locatinggivenbuildingbyplaintabletraversing. (Onefullsizedrawingsheet)
14) Three point problem in plane table traversing.
15) Determinationofelevationofpointbytrigonometric levelling.
16) Contour plan of given area. (Onefullsizedrawingsheet)
17) Study of planimeter.
18) Determinationofareaofirregularfigurebyusingplanimeter
19) Study of Box Sextant, Abney Level, Optical Theodolite.
20) To give layout of given plan of building.

AIM : Measurement of distance by Ranging andChaining
EQUIPMENT-:Chain,Arrows,Tapes,RangingRods,OffsetRods,Crossstafforopticalsquare, Plumbbob,woodenmallet,pegs.
Figure:

THEORY : By the various methods of determining distance the most accurate and common method is the method of measuring distance with a chain or tape is called Chaining. For work of ordinary precision a chain is used. But where great accuracy is Requiredasteeltapeisinvariablyused.

ThetermchainingwasoriginallyappliedtomeasureDistancewithachain.The termchainingisusedtodenotemeasuringdistancewitheitherchainortape,Intheprocess chaining, The survey party consists of a leader (the surveyor at the forward end of the chain) a follower (the surveyor at the rare end of the chain and an assistant to establish intermediate points).

The accuracy to which measurement can be made with chain and tape varies with the methods used and precautions exercised. The precision of chaining. For
ordinarywork,rangesfrom1/1000to1/30,000andprecisemeasurementsuchasBaseline may be of the order of 1000000 .
\|lT Basar
in diameter called links. The end of each link is bent into a loop and connected together by means of three oval rings which afford flexibility To the chain and make it less liable to become kinked. The ends of chain are provided with brass handles for dragging the chain on the ground, each with a swivel Joints so that the chain can be turned round without twisting.ThelengthoftheAlinkisthedistancebetweenthecentresofthetwoconsecutive middlerings. Theendlinksincludethehandlesmetallicringsindicatorsofdistinctivepointsof theChaintofacilitatequickreadingoffractionsofchaininsurveyingmeasurements. RANGING RODS:

The ranging rods are used for marking the positions of Stations conspicuouslyandforrangingthelines.loordertomakethesevisible at a distance, they are painted alternately black and white, or red and white or red White and black successively. The adjustment of the chainshouldasfaraspossiblebeaffectedsymmetricallyoneitherside ofthemiddlesoasthatthepositionofcentraltagremainsunaltered. In measuring the length of survey line also called as chain line. It is necessarythatthechainshouldbelaidoutonthegroundinastraight lineb\&

I wo men are required tor chainıng operation; Ine chain man at the torward end ofchainiscalledtheleaderwhiletheothermanattherearendisknownasthefollower. Duties of leader\&follower

Leader:- 1)Toputthechainforward
2) Tofixarrowsattheendofchain
3) Tofollowtheinstructionofthefollowers.

Follower:- 1)Todirecttheleadertothelinewiththerangingrod.
2) Tocarrytherearendofthechain.
3) Topickupthearrowsinsertedbytheleader.

Chaining 1) The follower holds the zero handle of the chain against the peg \&directs the leadertobeinlineoftherangingrod.
2) Theleaderusuallywithtoarrowsdragsthechainalonetheline.
3) Usingcodeofsignalsthefollowerdirectstheleaderasrequiredtotheexactly in the line.
4) Theleaderthenfixesthearrowsattheendofchaintheprocessisrepeated.

Ranging 1)Placerangingrodsorpolesverticallybehindeachpoint
2) Standabout2mbehindtherangingrodatthebeginningoftheline.
3) Direct the person to move the rod to right or left until the three ranging rods appearexactlyinthestraightline.
4) Sightonlythelowerportionofrodinordertoavoiderrorinnon-vertically.
5) Afterascertainingthatthreerodsareinastraightline,askthepersontofixup
the rod.
RESULT :ByChainingandrangingthetotaldistanceisfoundtobe \qquad

AIM: Locating various object by chain \& cross staff survey
APPARATUS: Chain, Ranging rod, Arrows, Cross-staff, Metallic Survey(Tape)

Cross staff

THEORY: Cross-Staffisthesimplestinstrumentusedforsettingoutperpendiculari.etaking offsets from a chain line. it is easier and quicker method ,but not very accurate .if greataccuracyisdesired,theworkshouldbecarriedoutbythetheodolite.

Open cross staff:- The simplest Type consists two parts 1) the head 2) the leg .the head is made of wooden block octagonal or round in shape about 15 cm side or diameter an 4 cm deep . on it are scribed two lines at right angles to another. At the end of these twolinesarefixedtwopointsofmetallicstriphavingslitsmadeinthem.Theseslitstwo
linesofsightwhichareatrightanglestooneanother.Theheadisfixedonawooden staff or pole about 3 cm in diameter and 1.2 to 1.5 m length . The pole is provided conicalmetalshoesothatitcanbedrivenintotheground.

IIIT
Basar

1．Triangulation Station．	2．Traverse station \qquad	3．Tie station．	4．Chain line． \qquad
5．Wood fencing．	6．Pipe railing． \qquad	7．Wire fencing．	8．Demarcated property boundary． \qquad
9．Undermarcated property boundary． \qquad	10．Compound wall．	11．Stream．	12．River．
13．Cart track．	14．Canal．	15．Railway line． \qquad ＋1＋1＋1＋1＋1＋1＋1＋1＋1＋1＋1＋1＋H＋	16．Railway double line．
17．Unmetalled road． \qquad	18．Wetalled road． \qquad	19．Pucca building．	20．Katcha building \square
21．Hedge $\ldots \ldots m$	22．Trees．	23．Woods．	24．Orchard．
25．Cultivated land． 	26．Swamps． 米道き果类	27．Culvert．	28．Bridge．
29．Embankment．	30．Cutting．	31．Railway bridge．	32．Temple．
33．Mosque．	34．Church．	35．Pond or lake．	36．North line．
37. Gates.	38．Well．	39．Bench mark． $\frac{\text { BM } 15.000}{4}$	40．Pucca drain．
41．Katcha drain．	42．Electric line．	43．Shed．	44．Gate and wall． \qquad
45．Pasture．	46．Cemetry $\dagger \dagger \dagger \dagger$ \dagger † \dagger	47．Foot path．	48．Lawn．

1) Tofindthefootoftheperpendicularfromtheobjectthecrossstaffisheld approximatelyinpositionandonepairofslitsisdirectedinthedirectionoftheranging rodfixedattheforwardandthechainline.Theobserverthenlooksthroughtheother pairofslitsandseeswhethertheparticularobjectisbisectedornot.ifnotthecross staffismovedtoandfromtillthenecessarybisectionisobtained.Beforenotingdown thechainageofthefootoftheperpendicularcaremustbetakentoseethatonepair ofslitisthedirectionofchainornot.Whileshiftingthepositionofthecross-staffitmay gettwistedandhenceprecautionisnecessary.
2) Tosetaperpendiculartothechainlineatagivenpointonepairofslitsisorientedin the direction of chain line by looking at the ranging rod fixed at the forward and by lookingthroughtheotherpairofslitsrangingrodisfixedinthedirectionofthelineof sightprovidedbythispair.

RESULT:Variousperpendiculartothechainlineobjectarecreatedusingcross-staff survey.

Equipment: - Two chains 20 m or 30 m , Arrows, Ranging rods. Cross staff or opticalsquare, Plumbbob

THEORY :Theobjectofcrossstaffsurveyistolocatedtheboundariesoffieldorplotand tofindoutitsarea.

Inthismethodabaselineinthecentreoftheareaisselected.Chainingalongthisline isdoneandtheoffsetsofthepointslyingontheboundariesoftheplotaretakenatdifferent chainages.by using a cross staff and tape on either side of the chain line and recorded against the chainagesin the field note book as already discussed. The offsets length are written on the left hand side or right hand side of the line as per position until whole ofthe area issurveyed.

Theplotisthendividedintotrianglesandtrapezoidsbecauseititeasytofindoutthe areaoftriangleandatrapezoids.

The area of the field is computed by the following formulae.
(1) Theareaofarightangletriangleisequaltothebasemultipliedbyhalfthe perpendicular
(2)Theareaofatrapezoidisequaltothebasemultipliedbyhalfthesumofthe \square Parpendicular.

Procedure:Tostartthecrossstaffsurvey,achainlineisrunthroughthecentreoftheareato besurveyed.itisdividedintorightangledtrianglesandtrapezoids.Theperpendicular totheboundaryaretakeninorderoftheirchainages. chainages of the points of intersection of the chain line and the boundariesshouldberecorded.Thelengthoftheboundarylinemaybemeasuredby direct measurement to check the accuracy of field work.After the field work is over, the survey is plotted to some convenient scale. The figure thus formed by the boundarylinesisdividedinthetabularfromasgivenbelow

Observation Table;-

| Sr.
 No. | Figure
 Chainage
 In m. | Base in
 (meter) | Offset
 in (meter) | Mean
 offset | Area in m² | | Remarks | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | | -Ve | |
| | | | | | | | 8 | 9 |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

RESULT:Areaofpolygonbychain\&staffmethodisfoundtobe
squaremeter.

ofstones.

THEORY: The important parts of compass are:-

1) Aboxwithgraduatedcircle.
2) A magneticneedle
3) A line ofsight

When the line of sight is pointed to point, the magnetic needle of compass points towardsnorth(Magneticmeridian).Theanglewhichthislineofsightmakeswiththe magnetic meridian is read on graduated circle.it is known as magnetic bearing ofthe line.

There are two types of compasses:-

1) Prismaticcompass
2) Surveyor'scompass.

Prismatic Compass:-

Prismaticcompassisveryvaluableinstrument.Itisusuallyusedforroughsurveyfor measuringbearingandsurveylines.Theleastcountofprismaticcompassis30min. Itconsistsofcircularboxof10cm-12cmdia.ofnonmagneticmaterial.pivotisfixedat the centre of box and is made up of hard steel with a Sharp pivot. graduated aluminum is attached to the needle. It is graduated in clockwise direction from 0^{0} to 360°.thefiguresarewrittenininverted.ZeroIswrittenatsouthendand180atnorth endand270attheeast.Diametricallyoppositearefixedtothebox.Thesightingvane consists of a hinged metal frame in the centre of which is stretched a vertical Horse hairfinesilkthreadofwhichisstretchedaverticalhair.itpressesagainstaliftingpin whichlifttheneedleofthepivotandholdsitagainsttheglasslid.Thuspreventingthe wear of the pivot point to damp the oscillations of the needle when about totake
face of the prism can be folded out the edge of the box when North end is used Sometime the sighting vanes is provided with a hinge mirror Which can be placed upward or downwards on the frame and can be also Slided along it is required. The mirrorcanbemadeinclinedatanyanglesothatObjectswhicharetoohighortoo low can be sighted directly by reflecting.

BEARINGOFLINES:Abearingofalineisahorizontalanglemadebythesurveylinewithsome referencedirectionormeridian.Meridianmaybe

1) A truemeridian
2) A magneticmeridian
3) An arbitrary or assumedmeridian

True meridian: The true geographical meridian passing through a point is a line of intersection of earth's surface by a plane containing north south pole and given point. They are not parallel to each other at different places.

Magnetic meridian:-the direction indicate by a free suspended and a properly balanced magnetic needle Free from all other attractive forces. The direction of magnetic meridian can be established with the help of Magnetic compass.

Arbitrarymeridian:AnydirectionisassumedtobetheReferencemeridianto Carry out smallsurvey.
measured clockwise from the north point of the reference meridian towards the line right found the circle. The angle thus measured between the reference meridian and the line is called Whole circle bearing of the line. Angles measured will have value between 0 to 360 degrees.

Conversion of W.C.B. in R.B

Reduced bearing	Case	WCB between	R.B.	QUADRANT	(R.B): In bearing of a clockwise
		0^{0} TO90 ${ }^{\circ}$	WCB	N-E	
this system of	2	$90^{\circ} \mathrm{TO}-180^{\circ}$	180-WCB	S-E	
ine is measured	3	$180^{\circ} \mathrm{TO}-270^{\circ}$	WCB-180 ${ }^{\circ}$	S-W	
-	4	$270^{\circ} \mathrm{TO} 360^{\circ}$	360-WCB	N-W	

anticlockwisefromnorthorsouthdirectionwhicheverisnearertothelinetowardseast or west. The concept of reduced bearing facilitates computations in traverse surveying. Conversion of R.B in W.C.B.

Case	R.Bin quadrant	Rule ofW.C.B.	W.C.B between
1	N-E	$\mathrm{WCB}=\mathrm{R} \cdot \mathrm{B}$	0^{0} TO900
2	S-E	WCB $=180-\mathrm{R} . \mathrm{B}$	90^{0} TO -180
3	S-W	$W C B=R . B+180$	$180^{\circ} \mathrm{TO}-270^{\circ}$
4	N-W	WCB $=360-\mathrm{R} . \mathrm{B}$	$270^{\circ} \mathrm{TO} 360{ }^{\circ}$

The compass may be held in hand but for better results it should be fitted at the topof tripodhavingballandsocketarrangement.Theadjustmentofacompassisdoneinthe following threesteps.

1) Centering:-ThecompassfittedoverthetripodIsliftedbodilyandplacedapproximately onthestationpegbyspreadingthelegofatripodequally,Thecentreofthecompassis checked by dropping a small piece of stone from the centre of the bottom of the compass so that it falls on the top of the station peg. A plumb bob may be used to judge the centering either bt attaching it with a hook providing at the bottom or otherwisebyholdingitbyhand.
2) Levelling:-After the compass is centred, it is leveled by means of ball and soketarrangementsothatthegraduatedcirclemayswingfreely.Itcanbecheckedroughly by placing a round pencil on the top of the compass, when the pencil does not move, thatisroughlythehorizontalposition.
3) Focusing the prism: - The prism attached is moved up and down so that grauation on thegraduatedcircleshouldbecomesharpandclear.

OCAL ATTRACTION:

Sometimes.themagneticneedledoesnotpointtowardsmagneticNorthorSouth.The reasonbeingthattheneedlemaybeundertheinfluenceofexternalattractiveforces which are produced due to magnetic substances Thus the deflection of the needle fromitsoriginalposition,duetothepresenceofsomemagneticsubstances isknown as local attraction. To detect local attraction at a particular place, fore and back bearingofeachlinearetaken.Thendifferencecomesouttobe 180° thereisnolocal attractionateitherstation.Ontheotherhandofthedifferenceisotherthan 180°,the
presenceofironsubstanceneartothecompass.Ifthedifferencestillremainsthelocal attractionexistsatonorboththestations.

Elimination of Localattraction:-
1stmethod: - In this method, the bearing of the other lines are corrected and calculated on the basis of the a line which has the difference between its fore bearing and back bearing equal to 180°.

The magnetic of the error is formed due to local attraction by drawing a sketch of observed and correct bearing of the line at each station. The error will be negative whentheobservedbearingislessthanthecorrectedoneandthecorrectionwillbe positive and viceversa.

If however, there is no such line in which the difference of fore bearing and back bearingisequalto 180°,thecorrectionshouldbemadefromthemeanvalueofthe bearing of that ine in which the difference between the fore and the back bearing is theleast. Ifthebearingsareobservedinquadrantalsystem,thecorrectionshouldbeapplied nproperdirectionbydrawinganeatsketchroughly.

2ndMethod: - This method is more general as the bearing at a station locally affected may be incorrect but include angles calculated from these bearing will be correct since the amount of the error will be the same for all the bearing observed from that station. Thus starting from the unaffected line and using these included angles the correct bearing of all pther lines can be calculated.

Note: - The sum of the internal included angles must be equal to (2n-4) right angles where $\mathrm{n}=$ number of sides of a closed traverse.

1) Fourrangingrodsarefixedatdifferentpointsi.e. $A, B, C, D, E e t c . s u c h t h a t i t s h o u l d b e$ mutuallyvisibleandmaybemeasuredeasily.
2) Measure the distance betweenthem.
3) At point A the prismatic compass is set on the tripod Stand, centering and levelingis then properlydone.
4) TherangingrodatBisrangedthroughsightingslitsandobjectivevaneattachedwith horsehairandreadingonprismaticcompassisnoteddown.
5) itisforebearingoflineAB.ThentheprismaticcompassisfixedatBandrangingrodat
C. AND A are sighted. And reading is taken as forbearing of $B C$ and back bearing $O f A B$.
6) RepeatthesameprocedureatthestationsC,Detc.

Observation Table

Sr. no	Line	Observed bearing	Local attraction	error	Correction	Corrected bearing	Included angle
A	AB						
B	AD						
C	BC						
	BA						
	CD						
	CB						
	DA						
	DC						

SAMPLECALCULATION:- Error=observedbearing-correctedbearing
Check $=(2 n-4) \times 90^{0}$
RESULT:TheprismaticcompassisstudiedandbearingoflinesoftraverseareObserved,the correction due to local attraction at affected station is done and corrected bearings arewrittenintabularform.

AIM: Determination of elevation of various points with Auto level by collimation plan method and rise \& fall method.

APPARATUS: Auto level, leveling staff

Figure:-

Dumpy Level
THEORY:
Levelling: The art of determining and representing the relative height or elevation ofdifferentobject/pointsonthesurfaceofearthiscalledleveling.Itdealswith measurement in verticalplane.

By leveling operation, the relative position of two points is known whether thepoints are near or far off. Similarly, the point at different elevation with respect to a given datumcanbeestablishedbyleveling.

LEVELLING INSTRUMENTS:- The instrument which are directly used for leveling operationare:Level, Levellingstaff

Level: - An instrument which is used for observing staff reading on leveling staff kept over different points after creating a line of sight is called a level.
consists of the following points:

1) LevellingHeads
2) Limbplate
3) Telescope

Telescope consists of two tubes, one slide into the other and fitted with ensanddiaphragmhavingcrosshairs.itcreatesalineofsightbywhich thereadingonthestaffistaken

The essential parts of a telescope are

1) body2)objectglass3)Eye-piece4)Diaphragm5)Rayshade6)The rackandpinionarrangement7)Focusingscrew8)Diaphragmscrew.
2) Bubbletube
3) Tripodstand

Auto level:
TheAutolevelissimple,compactandstableinstrument.Thetelescopeisrigidlyfixedto tssupports.HenceitcannotberotatedaboutitsLongitudinalaxisorcannotberemoved fromitssupport.ThenameAutoisbecauseofitscompactandstableconstruction.The axis of telescope is perpendicular to the vertical axis of the level. The level tube is permanentlyplacedsothatitsaxisliesinthesameverticalplaneofthetelescopebutitis adjustablebymeansofcaptainheadnotatoneend.

Therayshadeisprovidedtoprotecttheobjectglass.Aclampandslowmotion screwareprovidedinmodernleveltocontrolthemovementofspindle, abouttheverticalaxis.Thetelescopehasmagnifyingpowerofaboutthirtydiameters. Theleveltubeisgraduatedto2mmdivisionsandithasnormallyasensitivenessof20

Focusing type.
Adjustment of the level
The level needs two type of adjustment

1) Temporary adjustmentand
2) Permanentadjustment

Temporary adjustments of Auto level
These adjustments are performed at each set-up the level before taking any observation.
A) Settingupthelevel:-thisincludes

1) Fixingtheinstrumentinthetripod:-thetripodlegsarewellspreadontheground with tripod head nearly level and at convenient height. Fix up the level on the tripod.
2) Legadjustment:-Bringallthefootscrewsofthelevelinthecentreoftheirrun.Fix any two legs firmly into the ground by pressing them with hand and move the thirdlegtolegtorightorleftuntilthemainbubbleisroughlyinthecentre.Finally thelegsisfixedaftercenteringapproximatelybothbubbles.Thisoperationwill savethetimerequiredforleveling.
B) Levelling:-Levellingisdonewiththehelpoffootscrewsandbubbles.Thepurposeof levellingistomaketheverticalaxistrulyvertical.Themethodoflevelingtheinstrument depends upon whether there are three foot screws or four foot screws. In allmodern instrumentsthreefootscrewsareprovidedandthismethodonlyisdescribed.

3) Placethetelescopeparalleltopairoffootscrews.
4) Holdthesetwofootscrewbetweenthethumbandfirstfingerofeachhandand turnthemuniformlysothatthethumbsmoveeithertowardeachotheruntilthe bubble is incentre.
5) Turnthetelescopethrough 90° sothatitliesoverthethirdfootscrew.
6) Turnthisfootscrewonlyuntilthebubbleiscentred.
7) Bring the tescope back to its original position without reversing the eye piece andobjectglassends.
8) Again bring the bubble to the centre of its run and repeat these operationuntil the bubble remains in the centre of its run in both position which are at right angle to eachother.
9) Now rotate the instrument through 180°, the bubble should remain in centre providedtheinstrumentisinadjustment:ifnot,itneedspermanentadjustment.
c)Focusingtheeyepiece:-Tofocustheeyepiece,holdawhitepaperinfrontofthe objectglass,andmovetheeyepieceinorouttillthecrosshairsaredistinctlyseen. Care should be faken that the eye piece is not wholly taken out ,some times graduationareprovidedattheeyepieceandthatonecanalwaysrememberthe
eye piece.
(d)Focusingtheobjectglass:-Directthetelescopetothelevelingstaffandonlooking through the felescope, turn the focusing screw until the image appears clears and sharp. The image is thus formed inside the plane of cross hairs, Parallax, if any is removed by exact focusing. It may be noted that parallax is completely eliminated whenthereisnochangeinstaffreadingaftermovingtheeyeupanddown.

Reduced Levels
Thesystemofworkingoutthereducedlevelofthepointsfromstaffreadingtakeninthe fieldiscalledasreducedlevel(R.L)ofapointsistheelevationofthepointwithreference to the samedatum.

There are two systems of reduced levels

1) The plane of collimation system (H.I.method)
2) TheRiseandfallsystem
3) The plane of collimation system (H.I.method)

Inthissystem,theR.L.ofplaneofcollimation(H.I)isfoundoutforeveryset-upofthe level and then the reduced levels of the points are worked out with therespective planeofcollimationasdescribedbelow.

1) Determine the R.L. of plane of collimation for the first set up of the level by addingB.S.totheR.L.ofB.M.i.e(R.Lofplaneofcollimation=R.L.ofB.M.+B.S.)
2) Obtained the R.L. of the intermediate points and first change point by subtractingthestaffreadings(I.S.andF.S.fromtheR.L.ofplaneofcollimation (H.I).(R.L.ofapoint=R.LofplaneofcollimationH.I.-I.SorF.S)
collimationisdeterminedbyadditionofB.S.totheR.Lofchangepoint.Thusthe levels from two set-ups of the instruments can be correlated by means of B.S. andF.S.takenonC.P.
3) Find out the R.L.s of the successive points and the second C.P. by subtracting theirstaffreadingsfromthisplaneofcollimationR.L.
4) RepeattheprocedureuntilalltheR.Lsareworkedout.

Observation table:-

	Reading			R.L. of plane	Reduced	Remarks
Station	B.S	I.S	F.S	collimation (H.I)	Level	
-				\%		
\square						
-						

Arithmetical check: The difference between the sum of the back sights and the sum of the fore sights should be equal to the difference between the last and first reduced levels. .e Σ B.S - Σ F.S. $=$ LAST R.L -FIRST R.L
2) TheRiseandfallsystem

In this system, there is no need to determine R.L. of plane of collimation. The difference of level between consecutive points are obtained as described below.

1) Determine the difference in staff readings between the consecutive point comparingeachpointafterthefirstwiththatimmediatelyproceedingit.
the staff reading at the point is smaller or greater than that of proceeding point.
2) Find out the reduced level of each point by adding the rise to or subtracting fall from the R.L. of a proceeding point.

Observation table:-

Station	Reading		Rise	Fall	Reduced Level	Remarks	
	B.S	I.S	F.S				

Arithmetic check:- The difference between the sum of back sight and the sum of fore sight= difference between the sum of rise and the sum of fall = the difference between the ast R.L. and the first R.L.

ZB.S- \sum F.S $=\sum$ RISE $-\Sigma$ FALL $=$ LAST RL- FIRST RL Inverted staff reading

WhentheB.Mofstaffstationisabovethelineofcollimation(orlineofsight)thestaffis heldinvertedonthepointandreadingistaken.Thisreadingbeingnegativeisentered inthelevelfieldbookwithminussign,ortoavoidconfusion,'Staffinverted'shouldbe writtenintheremarkscolumnagainsttheentryofthereading.

The results are tabulated as below:

B.S.	I.S	F.S	H.I	R.L	Remarks
-2.795			97.215	100.000	B.M.Staffi nverted Point A

Whenthereadingontheinvertedstaffisaforesightorintermediatesight.itshouldalso perecordedinfieldbookwithminussign

The R.L. of such points may be worked at as:
R.L.of the point (where the inverted staff is held)
=R.L.ofH.I+F.S.orI.S.reading

RESULT:
The various reduced levels are calculated by rise and fall method and by using height or plane pf collimation method and are shown in observation table.

AIM :FixingbenchmarkwithrespecttotemporarybenchmarkwithAutolevelbyfly leveling and checkleveling.

Apparatus: Auto level, leveling staff, tripod stand, arrows, pegs Theory:

Fly leveling: - It is a very approximate from of levelling in which distances are not measuredandsightsaretakenaslargeaspossible.inthismethodalineoflevelsisrun todetermineapproximatelyreducedlevelsofthepointscarriedoutwithmorerapidly essprecision.

Checkleveling:Themainpurposeofthistypeoflevelingistocheckthevaluesofthe reduced levels of the bench marks already fixed. In this method only back sight and foresightaretaken.Thereisnoneedofintermediatesights.Howevergreatcarehasto be taken for selecting the change points and for taking reading on the change points becausetheaccuracyoflevelingdependsuponthese.

1) LetAandBthetwopointsasshowninfigureTheyaretooforapart.Thepositionof each set up of level should be so selected that the staff kept on the two points is visible through
thetelescope.
2) LetO1,O2,O3bethepositionsoftheleveltobesetup.Choosethechangepoints 1,2 etc. on a stable ground so that the position of the level should be midway between thetwostaffreadingtoavoiderrorduetoimperfectadjustmentofthelevel.
3) Now setup the level at O1 take the reading on the staff kept vertically on A with bubblecentral.ThiswillbeabacksightandR.LoftheAisistoassumedorsayknown.

Recordthesevaluesinthesamelineinthelevelbook.
4) Now select the position of C.P (1) so that the distance of it from O 1 is approximately equal to thatO1A
5) With the bubble in the centre take the reading of the staff held vertically over the changepoint.Thiswillbeaforesightandbookthisvalueinthelevelbookonthenext line in the columnprovided.
6) Now shift the level to $O 2$ and set up it there carefully, with the bubble in the centre takereadingonthestaffkeptverticallyastheforesightoverC.P(1).Thiswillbeaback sight, book it in the same line as the fore sight already recorded in the column provided.
7) Select another $\mathrm{CP}(2)$ on the stable ground as before so that station O 2 is approximatelymidwaybetweenC.P(1)andC.P(2).
8) Withthebubblecentral,takethereadingonthestaffkeptverticallyovertheCP2.This willbeforesightandbookitinthelevelbookpageinnextline.
9) RepeattheprocessuntilthepointB.Mreached.Thelastreadingwillbeaforesight
method.
11)Complete the remakes column also. Apply the arithmetical check

Observation table:-

Station	Readings	Heightofinstrument	Reduced Levels	Remarks	
A	B.S.	F.S			
B					
C					
D					
E					

RESULT:ThedifferenceoflevelbetweenthepointbeequaltoR.LofthelastpointminustheR.L attheB.Misfoundtobe------

AIM:L-Sectionandcrosssectionoftheroad(onefullsizedrawingsheeteachforL-section and crosssection)

APPARATUS: Auto level, leveling staff, ranging rod, tape etc.
THEORY:
Profile leveling: The process of determining elevations at points at short measured ntervals along a fixed line is called Longitudinal or profile leveling.

Crosssectioning:ItisamethodoflevelingtoknowthenatureofGroundoneitherside of the centerline of the proposed route. Levels are taken at right angles to the proposed Direction ff the road end at suitable distances and leveling is carried out along this crossSection. puring location and construction of highways, Rail tracks sewers and canals strakesorothermarksareplacedatvariousalignedpointsandtheundulationofthe groundsurfacealongapredeterminedlineisadjoined.Thelineofsectionmaybe A single straight lines changing directions. Levels are taken at right angles to the proposed Direction of the road end at suitabledistancesandlevelingiscarriedoutalongthiscrosssection.Crosssectionare the sections fun at right Angles to the centerline and on the either side of it for the purpose They are taken at each $10, \mathrm{~m}$ station on the centerline. The length of Cross section depends upon the nature of the work if cross sections are Short they are set square out by edge. If long they are set out by the Optical square, box sextant or theodolite.
simultaneouslywiththelongitudinalsectiontheymaybetakenatthehandlevel,level, abney level prtheodolite

PROCEDURE:

Let $A B C$ be the line of section set out on the ground and marked with pegs driven at equalinterval(say 20 mto 30 m)asinthefigure.Thelevelissetupgenerallyononeside of the profile to avoid too short sight on the points near the instrument and care is taken to set up the evel approximately midway between two change points. The evelingisstratedfromthebenchmarkofknownvalue.Fromeachsetupstaffreading are taken on pegs already fixed at the desired interval and also at significant points where abrout changes of slope etc. occur. All these readings are recorded as intermediate slight against the respective chainages along the line in the level book. Otherdataofthelevelbookisalsofilledupbeforestartingthework.Whenthelength pfsightisbeyondthepowerofthetelescope(usuallyitis 100 m),theforesightonthe change point is taken. The level is then isthen shifted and setup in an advanced positionandabacksightistakenonthechangepoint.Thechangepointmayormay hotlieinthelineofsection.Chainingandreadingarethencontinuedasbefore,tillthe wholelineofsectioniscompleted.

Theworkistobecheckedintheprogressoflevelingbytakingreadingonotherbench marks,onthewayoronbenchmarksfixedbydifferentialleveling.

The fore and back bearing of the section line should betaken and recorded. Next sketchesofthebenchmark,changepoints,andotherfeaturesuchasnallah,aroad,
column of the level-book.
The procedure and corresponding reading and values are represented on the page ofalevel-bookforapartofroadproject.

PlottingtheLongitudinalsection

When ever leveling operation is carried out the staft reading taken in the field are enteredinthenotebookcalledaLevel-Book.Eachpageofithasthefollowing columnswhichhelpinbookingofreadingandreductionoflevels.
Page of Level-Book

Page of Level-Book									
Name of work survey for:-								Page No:-	
Levellingfrom To									
InstrumentNo.			A.m................\|Conducted by:-						
Station	Distance In meters	Bearings	Staff Reading			Height of Instrument or		Reduced Level	Remarks
		FORE BACK	$\begin{aligned} & \text { Back } \\ & \text { (B.S) } \end{aligned}$	$\begin{aligned} & \text { Inter } \\ & \text { (I.S) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Fore } \\ & \text { (F.S) } \end{aligned}$	Rise	Fall		
	-							$\underline{4}$	
	-							+	
							1	$\underline{\square}$	
	-								
	-		,		,				-
	-				F	-			\square
						-			,
									-
					+				
,									-
					4				-
									\square
			F			析			Tha
									"-
	-ra					1			-
	-								
	4								

Figure:

Theodolite : The theodolite is the most intricate and accurate instrument used for measurement of horizontal and vertical angles. It consists of telescope by means of whichdistantobjectscanbesighted.Thetelescopehastwodistinctmotionsoninthe horizontalplaneandtheOtherintheverticalplane.Theformerbeingmeasuredona graduatedHorizontalverticalcircleoftwoverniear.

Theodolite are primarily classified as
2) Non-transit theodolite

A theodolite is called transit theodolite when its telescope can be resolved through a complete revolution about its horizontal axis. In a vertical plane. The transit type is largely used.

Narious parts of transit theodolite

1) Telescope:itisanintegralpartandismountedonthespindleknownashorizontal axisorturnonaxis.Telescopeiseitherinternalorexternalfocusingtype.
2) The leveling head: It may consists of circular plates called as upper and lower Parallel plates. The lower parallel plate has a central aperture through which a plumbbobmaybesuspended.Theupperparallelplateortribranchissupportedby meansoffourorthreelevelingscrewsbywhichtheinstrumentmaybeleveled.
3) Tolowerplateorscrewplate:Itcarrieshorizontalcircleatitsleveledscrew.

It carries a lower clamp screw and tangent screw with the help of which it can be fixed accurately in any desired position.
4) Theupperplateorvernierplate:-itisattachedtoinneraxisandcarriestwovernier and at two extremities diametricallyopposite.
5) Compass: the compass box may be either of circular form or of a rough type. The former is mounted on the vernier plate between the standards while the latter is attached to the underside of the scale or lower plate or screwed to one of the standards. Modern theodolite is fitted with a compass of the tubular type and it is screwedtooneofthestandards.
6) Verticalcircle:theverticalcircleisrigidlyattachedtothetelescopeand
moves with it. It is silvered and it is usually divided into four quadrants.
8)Plumbbob:Tocentretheinstrumentexactlyoverastationmark,aplumbbob ssuspendedfromthehookfittedtothebottomofthecentralverticalaxis.

Repetition method of measuring Horizontal angles Whenitisrequiredtomeasurehorizontalangleswithgreataccuracyasinthecaseof traverse,themethodofrepetitionmaybeadopted.Inthismethodthesameangleis added several times by keeping the vernier to remain clamped each time at the end pfeachmeasurementinsteadofsettingitbacktozerowhensightingattheprevious station. The corrected horizontal angle is then obtained by dividing the final reading by the number of epetitions. Usually six reading, three with face left and three with faceright,aretakenTheaveragehorizontalangleisthencalculated. Procedure:-

1) LetLOMisthehorizontalangletobemeasuredasshowninfig.Oisthestationpoint fixed on the ground by a peg. Set up the theodolite over the peg 'o' and level it accurately.
2) Set the horizontal graduated circle vernier A to read zero or 360° by upper clamp screw and slow motion screw. Clamp the telescope to bisect the bottom shoe of the flag fixed at point 'L' and tighten the lower clamp. Exactly intersect the centre ofthe
theodolite should be left and the telescope in normal position.
3) Check the reading of the vernier A to see that no slip has occurred. Also see thatthe platelevelsareinthecentreoftheirrun.ReadthevernierBalso.
4) Release the upper clamp screw and turn the theodolite clockwise. Biset the flag bottom shoe fixed at point M by a telescope. Tighten the upper clamp screw and bisecttheshoeexactlybymeansofupperslowmotionscrew.
5) NotethereadingonboththeverniertogettheapproximatevalueoftheangleLOM.
6) Releasethelowerclampscrewandrotatethetheodoliteanticlockwiseaiazimuth.

Bisect again the bottom shoe of the flag at ' L^{\prime} ' and tighten the lower clamp screw. By means of slow motion screw bisect exactly the centre of the shoe.
7) Release now the upper clamp screw and rotate the theodolite clockwise. Bisect the bottom shoe of the flag fixed at M and tighten the upper clamp screw. By means of slowmotionscrewbisectexactlythecentreoftheshoe.Thevernierreadingswillbw nowtwicetheoftheangles.
8) Repeat the process until the angle is repeated the required number of times (usually 3).Add 360° foreverycompleterevaluationtothefinalreadinganddividedthetotal anglebynumberofrepetitionstogetthevalueofangleLOM.
9) Change the face of the theodolite the telescope will now be inverted. Rrpeat the wholeprocessexactlyintheabovemannerandobtainvalueofangleLOM.
10)The average horizontal angle is then obtained by taking the average of the two anglesobtainedwithfaceleftandfaceright.
11) Usuallythreerepetitionsfaceleftandthreewithfacerightshouldbetakenandthe mean angle should becalculated.

S.N.	Instrument Station	Shifted to	Face left readings			
		VenierA 0,I,II	Venier B 0,I,II	Total angle	No of Repetition	Mean horizontal angle 0,I,II
\square	0	L				
		M	+ Pr $_{\text {1 }}$	-	=	
		L	-17-			
		M				
		L			-	+
		M				-

S.N.	Instrument Station	Shifted to	Face Right readings				-
		VenierA 0,I,II	VenierB 0,I,II	Total angle 0,I,II	No of Repatition	Mean horizontal angle 0,I,II	Average horizontal angle 0,I,II
-	0	L					
\square		M					
		L					
		M					
		L					
		M			3		

RESULT: Average horizontal angle is found to be ------------

AIM: MeasurementofverticalAngleswithTheodolite APPARATUS:-Theodolite,threerangingrods,

THEORY: Theodolite is an instrument designed for the measurement of horizontal and vertical angle. It is most precise method it is also used for laying of horizontal angles Locatingpointsonlineprolongingthesurveylineestablishingthegradient,determination of difference in the elevation setting out curve. Theodolite are of two types transit and nontransit.Transittheodoliteiscommonlyusednowadays.intransittheodolitetelescope can be evolved a complete revolution about its horizontal axis in a vertical plane. a transittheodoliteconsistsofessentialpart.
tripod. The head comprises of two parts
a) Alevelingfootscrewsforlevelingtheinstrumenti.e.formarkingverticalaxistruly vertical.
b) A movable head or centering arrangement for centering the vertical axis accuratelyoverastationpoint.
2) A lower level circular horizontal metal plate: It carries a circular graduated arc. The lower plate is attached to a vertical metal spindle (outer axis) which works in vertical bearing and a form a part of leveling head. It may be graduated in degree and half degree or a degree $1 / 3$ of degrees .the upper plate carries an index and vernier or micrometer towards fine reading on gradated horizontal circle .the upper plate carries standard use of for supporting the telescope and the spirit level used for leveling the instrument.
3) Atelescope:Thetelescopeispivotedbetweenthestandardatrightanglestothe horizontal axis .It can be rotated about its horizontal axis in a vertical plane. The telescopeisprovidedwiththefocusingscrew,Clampingscrewandtangentscrew.
4) Acirculargraduatedarecarriedonverticalcircle:Itisattachedtothehorizontalaxis of the telescope, it is usually divided into 4 quadrants, but in some instruments it is graduatedcontinuouslyfrom0-360 .thegraduationineachquadrantarenumberedfrom 0900inoppositedirection. Thesubdivisionsofverticalcirclearesimilartothoseofvertical circle. MESURMENT OF VERTICALANGLE

Averticalangleistheanglebetweentheinclinedlineofsighttoanobjectandthe horizontal.Itmaybeanangleofelevationoronangleofdepressionaccordingasthe
nstrument.TomeasureangleofelevationordepressionLOMshowninfig.proceedas follows:

1) SetupthetheodoliteatstationpointOandlevelitaccuratelywithreferencetothe altitudelevel.
2) Set vertical verniers C and D exactly to zero by using the vertical circle clamp and tangentscrew,whilethealtitudelevelshouldremaininthecentreofitsrun.Alsothe faceofthetheodoliteshouldbeleft.
3) Releasetheverticalcircleclampscrewandrotatethetelescopeinverticalplaneso astobisecttheobjectM.tightentheverticalcircleclampandexactlybisectthe objectbyslowmotionscrew.
4) Read both verniers C and D. the mean of the tow readings gives the value of the requiredangle.
5) Similar observation may be made with other face. The average of the tow values thus obtained gives the value of the required angle which is free from instrumental errors.
6) Similarlytheangleofdepressioncanbemeasuredfollowingtheabovesteps.

To measure the vertical angle between two points L and M
SometimesitisrequiredtomeasureverticalanglebetweentwopointsLandM.There can be threepossibilities.
(a) One point is above the line of sight and the other is below the line of sight then angleLOMasshowninfigwillbeequalto $(<a+<\beta)$
(b) Boththepointsareabovethelineofsight.ThentheangleLOM $=<\alpha-<\beta$ (Refer Fig2)
(c) Boththepointsarebelowthelineofsight,thentheangleLOM $=<\alpha-<\beta$ (ReferFig3)

Flg-1

Fig-2

To measure the angle between two points L and M proceed as follows

1) SetthetheodoliteatstationpointOandaccuratelylevelit.
2) Bisect the flag at L as explained already and take the reading on the verniers C andD.Calculatethemeanangle.
3) Bisect the flag at M as before and take the reading on the verniers C and D. Calculate the meanangle.
between points L and M as shown in the figure (4)
Observation table:-

S.N.	Instrument Station	Sighted to	Face left readings			
			$\begin{aligned} & \text { VenierC } \\ & 0, \mathrm{I}, \mathrm{II} \end{aligned}$	$\begin{aligned} & \left\|\begin{array}{l} \text { VenierD } \\ 0, \mathrm{I}, \mathrm{II} \end{array}\right\| \end{aligned}$	Mean Angle	Vertical Angle
	0	P			18	
	(+ve)	L				
	(-ve)	M				

S.N.	Instrument Station	Sighted to	Face Right readings				Average Vertical Angle0,I,II	Remarks
	-		$\begin{aligned} & \text { VenierC } \\ & 0, I, I I \end{aligned}$	VenierD $0, \mathrm{I}, \mathrm{II}$	Mean Angle 0,I,II	Vertical Angle 0,I,II		
	-	P						-
	(+ve)	L						-
\square	(-ve)	M	-		-			-

Result:Theaveragevalueofverticalisfoundtobe

AIM:Determinationofhorizontaldistancebetweentwoinaccessiblepointswiththeodolite APPARATUS:-Theodolite,threerangingrods

Theory: - Traversecomputation
The latitude of the line may defined as the distance measured parallel to an assumed meridian direction (i.e true meridian, magnetic meridian or any other reference direction). The departure of a line may defined as the distance measured parallel to line perpendicular to the meridian.

The latitude (L) of a line is positive (+ve) when measured northward or upward and is fermedasNorthing,thelatitudeofaline(-ve)whenmeasuredsouthwardordownwardand termed assouthing

Similarlythedeparture(D)ofalineispositive(+ve)whenmeasuredEastwardortothe right and is known as Easting. The departure of a line is negative (-ve) when measured Westward prtoleft and is knownas

Westing

Refer to fig suppose the length of the line $\mathrm{OP}=\mathrm{L}$ and bearing of the line θ, then

Departure of the line $=I \sin \theta$
Thus to find the latitude and departure of the line , it is essential to convert the bearing (W.C.B)toreducebearing (R.B);becausethesignoflatitudeanddeparturedependsupon the feduced bearing i.e the first letter N or S determine the sign of the latitude and E or W determinethesignofthedeparture.

The following table gives the sign of latitude and departure.

S.N.	Whole Circle Barings (W.C.B)	Reduced Bearing	Sign of Latitude		Departure

Problem:-thedistancebetweentwoinaccessiblepointsPandQ,thetheodoliteissetup attwostationsA\&B1000mapartandthefollowingangleswereobserved.;

$\angle P A Q=45^{\circ} ;<\mathrm{PAQ}=57^{\circ} ;<\mathrm{PBA}=50^{\circ} ;<\mathrm{PBQ}=50^{\circ}$, ThedistanceoftwoinaccessiblepointPQis calculatedby

ItisclearthatlinesPA,AB,BQ, andQPfromclosedtraverse.Thelatitudeanddepatureof inesPA,ABandBQcanbedeterminebycalculatingtheirlengthandbearingfirst.

The latitudes and departure (or consecutive coordinates) can be calculated as given below;

S.No.	Line	Length (m)	R.B.	Latitude L	Departure D
1	PA	2213	$\mathrm{~N} 0^{\circ} \mathrm{E}$	+2213.0	+0.0
2	AB	1000	$\mathrm{~N} 78^{\circ} \mathrm{W}$	+207.9	-978.1
3	BQ	2869	$\mathrm{~S} 28^{\circ} \mathrm{W}$	-2531.0	-2325.1
			Total	-110.1	-2325.1

Result:-LengthoflinePQ=

$$
\sqrt{\left.\sum L\right)^{2}+\left(\sum D\right)^{2}}=\sqrt{-110.1)^{2}+(2325.1)^{2}}
$$

$=2328 \mathrm{~m}$

AIM:Locatinggivenbuildingbytheodolitetraversing(Onefullsizedrawingsheet)
APPARATUS:-Theodolite,threerangingrods
THEORY: Theodolite Traversing:
Atraversesurveyisoneinwhichtheframeworkconsistsofaseriesofconnectedlines, the lengths and direction of which are measured with the help of tape or chain and an angle measuringinstrument.

When the lines from a circuit which ends at the starting point, the survey is termed a closed traverse, if the circuit does not close, the traverse os known as open one.

The closed traverse is suitable for wide areas and for locating the boundaries of the akes,woodetc.,whereanopentraverseiscarriedoutintheoflongstripsofcountryasin thecaseofcanal,road,railwayetc.

In theodolite traversing, theodolite is used for measurement of angles or tape orchain, preferable,steeltapeisusedforlinearmeasurement.Thismethodisappliedforaccurate and precisesurvey.

Method of traversing
Themethodofmeasuringtheangleandbearingofatraversemaybedividedintoclasses:
a) Those in which the angle at different stations are measured directly and the bearing subsequently calculated from the measured angles and the givenbearing of an initialline
b) Bydirectobservationofbearingofdifferentsurveylinesbyatheodolite.
A) theodoliteTraversingbyDirectObservationofAngle:-Inthismethod,horizontalangles measuredatdifferentstationsmaybeeither,
i. Defection Angle

1) Traversingbythemethodofincludedangles:-

In a closed traverse included angles can be measured by running a traverse in clockwise or counterclockwise direction. The common practice is to run a closed traverse in counterclockwise direction, but it is well to adhere to a regularofroutineofmeasuringangles.Generallyinterioranglesareobtainedit the traverse is run anticlockwise and exterior ones when it is run clockwise as shown in the fig1\&2.

Clockwise traverse statlons occupied in order AGF

The angle may be measured by the repetition method and the observation shouldbetakenwithboththefacesandalsobyreadingboththeverniers.Then averaging the value of each angle should be calculated. It will ensure desired degreeofaccuracyandremovalofmostoftheinstrumentalerrors.

Procedure:-InrunningatraverseABCDEFGasshowninfigure,setupthethedolite over the station A and level it accurately. Observe the magnetic bearing at the line $A B$ and measure the ncluded angle GAB as usual. Shift the theodolite to each of the successivestationsB,C,D,E-----(inanticlockwisedirection)andrepeattheprocessto
measureeachoftheangleABC, $B C D, C D E e t c$.Alsomeasurethelengthoftheline $A B, B C, C D$ and so on by means of a steel tape if possible and take necessary offsets to ocatedifferentdetailsoneachofthesurveyline.Thewholeworkshouldberecorded carefullyinthefieldnotebook.

In open traverse say LMOP as shown in Fig. the theodolite is setup at strating stationLandforebearingoflineLMistaken.ThetheodoliteisthenshiftedM,Oandthe direct angles such as LMO,MOP---- are measured in the forward direction. Length of each line is measured and necessary offsets are taken to locate different details on eachofthesurveyline.

Thismethodoftraversingismoresuitableinsurveysforrailway,roads,pipeline etc.inwhichaseriesoftraverselinesmaymakesmalldeflectionangleswitheach other.

In measuring deflection angles having observed the bearing at the starting station ' L^{\prime} Set the theodolite at each of station such as M, N, O, Q. Bisect the back stationsusinglowerclampanditstangentscrew.Theverniermaybesettozeroor
theinitialreadingmaybetaken.Thetheodoliteistransitedandtheforwardstation is bisected with upper clamp screw and the tangent screw. The verniers areagain read, the difference between the first set of reading and the second gives the angleofdefection.Themeasurementiseitherrightorlefthandedandthisdirection must be most carefully noted in the field book. Chaining is done in the usual manner.

Traverse computation are usually are done in the tabular from the most commonly used tabular from is known as Gale's traverse table.

The steps followed are as under for computing the table.

1) Findoutthesumofalltheobserved, interiororexteriorangleitshouldbe($2 n+4$)right anglewheren=numberofsidesoftraverse.
2) Ifthesumisnotequalto($2 n+4$)rightanglesforexteriororinterioranglesapplythe necessarycorrectiontoalltheanglesothatthesumofthecorrectedanglesshould beexactlyequalto($2 n \pm 4$)rightangles.
3) Findoutthewholecirclebearing(W.C.B)ofallotherlinesfromtheobservedbearing ofthefirstlineandthecorrectedincludedangles.

As a check the calculated bearing of the first line must be equal to observed bearing.
4) Convert the whole circle bearing to the reduced bearings and determine the quadrant in which theylie.
5) Calculate the latitude and departure of each line from the known length and the reducedbearingofthelines.
6) Find out the sum of all northings and also of southings similarly of eastings and westings.Determinethedifference ifanybetweennorthingsandsouthings,alsoin eastings andwestings.
7) Apply the necessary correction as per calculations to the latitudes and departures ofeachlines,sothatthesumofnorthingsmustbeequaltosumofsouthings,also eastings andwestings
prdinatesoftheline,sothattheyallarepositive,thewholeofthetraversethuslying nthefirstquadranti.eNorth-Eastquadrant.

Gale's Traverse Table is shown in table
fable:- GALE'S TRAVERSE TABLE

Result: - 1) Closing Error $=\sqrt{ }(\Sigma L) 2+(\Sigma \mathrm{D}) 2$
2) Reducedbearing(θ) oftheclosingerror $=\operatorname{Tan}^{-1} \Sigma \phi / \Sigma L$

AIM: Locating given building by plane table surveying (One full size drawing sheet) . APPARATUS: 1) ThePlanetable withtripod,2)Alidade,3)Troughcompass4)Spritlevel,5) PlumbingforkorU-frame,6)Plumbbob,7)Tape,chain,pegs,rangingrods,woodenmalletetc. THEORY:

Planetablesurveying:thesystemofsurveyinginwhichfieldobservationandplotting worki.e.botharedonesimultaneouslyiscalledplanetablesurveying.

The plane Table:- The drawing board made of well seasoned wood such as teak or pinewhichisusedforthepurposeofplottingiscalledplanetable.Itisavailableinsizes
$500 \times 400 \times 15 \mathrm{~mm}, 600 \times 5000 \times 15 \mathrm{~mm}$ and $750 \times 600 \times 20 \mathrm{~mm}$. The top surface of board is perfectly plane and to the underneath it is fitted with a leveling head or ball and socket arrangement. The table is mounted on a tripod by means of a central screw with a wing hut or in such a manner so that the board can be revoled, leveled and clamped in anyposition.
seasoned) rule 40 cm to 60 cm long, 3 cmto 5 cm wide and fitted with two vanes at the ends s calledan alidade.

The beveled graduated edge is known as the fiducial edge. Such an alidade isknown as plainalidade.

Trough Compass:
The compass which is used to mark the direction of the magnetic meridian on the plane fable is called trough compass. It consist of a long narrow rectangular non magnetic metallic box 8 cm to 15 cm long, 3 cm to 5 cm wide and 2 cm to 3 cm high on thecoveredwithaglasscover.itthecentreoftheboxisprovidedamagneticneedle withaagatestonemountedonthesharpsteelpivot.Attheendthethroughcompass graduatedscalesarewithzerodegreeatthecentreandupto 5° oneithersideofthe zeroline.AcounterweightisalsousedforNorthendoftheneedletorepresentNorth andisalsousedforbalancingthedipoftheneedle.

SpritLevel:-Asmallspritlevelcircularorrectangularisrequiredforseeingifthetableis properlylevel.Thelevelmusthaveflatbasesothatitcanbeplacedonthetable.

PlumbingforkorU-frame:-Theplumbingforktowhichisattachedaplumbbob,used for centering the plane table over the station occupied by the plane table. it is also meantfortransformingthegroundpointontosheetsothatboththepointsshouldbe in the same verticalline

It consists of two light metal arms as shown in fig. approximately of equal lengths.A hookforsuspendingaplumbbobisprovidedatthelowerarmimmediatelybelowthe end point of the upper arm. The upper arm is placed on the plane table while the lower arm with a plumb bob is moved below the table for centering over the ground stationmark,thusintheexactpositionthepointedendoftheupperarmwillgivethe corresponding position on thepaper.

details are located on the sheet, the method is known as radiation method Inthismethodtheraysaredrawnfromtheinstrumentstationtothepointtobe located, then the distances are measured from the instruments station to the point andthepositionoftheeachpointisplottedonthesheetusingasuitablescale.

Themethodismostsuitedforsurveyingsmallareaswhichcanbecontrolledby singlesetting.Itcanalsobeusedincombinationwithothermethod.Thismethodcan be applied for ocating distant points if the distances are obtained tacheometrically withthehelpofthetelescopealidade.

思ADIATION METHOD

Procedure:-1)Selectthepositionofthetablewhereitisbesetsothatallthepointsto belocatedarevisiblefromit.Let'O'bethepositionofsuchapointontheground.
of sheet by means of trough compass at the table.
3) Nowtransferthepositionofthepoint'O'onthegroundtothesheetbymeansof theaplumbingfork.Thepoint'O'willrepresentpoint'o'willrepresentpoint'O'onthegro
und.
4) Withthealidadetouchingthepoint'o'(mayberepresentedbyfixingapin),sight thepointAinthefield.Drawtherayalongthefiducialedge.Measurethedistance of this point from the instrument station by means of tape and plot the point 'a' correspondingtopoint'A'inthefieldtoscaleinthesheet.
5) SimilarlysightotherpointssuchasB,C,D,Eetc.andmeasuretheirdistancesfromthe instrumentstation.Plotthemtoscaletogettheirpositiononthesheetsuchasb,c,d etc.

Intersection method:-
Whenthelocationofanobjectisobtainedonthesheetofpaperbythe ntersectionoftheraysdrawnaftersightingattheobjectfromtwoplanetablestations (previouslyplotted), itiscalledintersectionmethod.

Themethodissuitablewhenthedistancebetweenthepointandtheinstrument stationiseithertoolargeorcannotbemeasuredaccuratelyduetosomefieldconditions as in case of mountainous country. It is also employed for filling up details, locating distantandinaccessibleobject,locatingthebrokenboundariesasinthecaseofrivers etc.Themethodcanalsobeusedforcheckingofplottedpoints.

Thelinejoiningthetwoinstrumentstationsisknownasthebaseline.Nolinear measurementotherthanthebaselineismade.

Procedure :-

1) Select two points L and M in such a way so that all the points to be plotted arevisiblefromthem.Nowsetthetableatstation,pointLinsuchaposition sothatthesheetshouldcoverallthepoints.Levelthetableandclampit.
2) Drawthenorthlineinthetopcornerofsheetbymeansoftroughcompass
3) NowtransferthepositionofstationpointLonthesheetas'l'withthehelpof plumbingforksothatitisverticallyabovetheinstrumentstation.
4) Withthealidadepivotedabout'I'sighttherangingrodfixedatstationpoint M and draw the line in the direction of M. Now measure the distance LM by meansofthetapeandcutofflmtosomesuitablescalealongtheraydrawn towardM;thusfixingthepositionof'm'onthesheetcorrespondingtostation pointMontheground.Thelinelmiscalledthebaseline.
5) Withthealidadetouchingthepoint'l'sighttheobjectsinthefieldsuchas $A, B, C, D, E e t c . a s s h o w n i n f i g u r e a n d d r a w t h e r a y s t o w a r d s t h e m$. The
corresponding to above details.
6) NowshiftthetabletothestationpointMandapproximatelysetitintheline withML.Setitupsothatthepoint'm'isverticallyabovethestationpoint' M^{\prime} and levelit.
7) Orient the table roughly by compass, then finally by placing the alidade along ml and bisecting the ranging rod fixed at station point 'L' i.eby back sighting'L'.Clampthetableinthisposition.
8) WiththealidadecenteredatmsightthesameobjectinthefieldsuchasA, B,C,D,Eetc;anddrawrays.Theintersectionoftheserayswiththe respectiveraysfromllocatetheobjectA,B,C,D,Eetc;asa,b,c,d,eetc;on thesheet.
IIIT Basar
:Threepointprobleminplanetablesurveying.
APPARATUS:Planetablealidade,plumbingfork,plumbbob,Rangingrod,drawing sheetetc.

THEORY:It is finding the location of the station occupied by a plane table on the sheet, pymeansofsightingtothreewell-definedpointsofknownlocationonthesheet The principle of this method lies in the fact that if the plane table is correctly oriented, the three resectors through $\mathrm{a}, \mathrm{b}, \& \mathrm{c}$, shown in fig. meet at a point p whichisthelocationoftheplanetablestationonthesheet, providedthepoints $A, B, C \& P$ do not lie on the circumference of a circle. By solving three-
point
problem,thus,theorientation\&resectionareaccomplishedsimultaneously.
Thesolutionofthree-pointproblemisfurtherillustratedgraphicallyin
fig.thestationsA,B,\&Careofknownposition\&pisofunknownposition.Ifthe angle a is observed between $P B, \& P A$, the position of P is indeterminate, because P can be anywhere on the circle circumscribing the triangle PAB. Additionalinformationis feededtomaketheproblemdeterminate.Iftheangle β,whichistheanglesubtendedbyACatP,isalsoobservedthenthesolutionis unique since P, A \&C ie on the circle that circumscribe triangle PAC, \& P isone pfthetwointersectionpointsofthecircles\&Aistheotherintersectionpoint.This solutionbecomesindeterminateofA,B,C,\&Pfallonthecircumferenceofone circle.

If the two circles tend to merge into one circle, the problem will be less stable \& finally pecomes indeterminate again when the two circles coincide.

Points should be selected in the field so as to avoid this situation.
methods applicable to the plane table discussed.
a. mechanicalmethod(tracingpapermethod)
b. graphicalmethod
c. trial\&errormethod(Lehmann'smethod)

PROCEDURE:-

The three point problem consists in locating on the plan the position of the instrumentstationonthegroundbymeansofobservationtothreewelldefined pointswhosepositionshavebeenalreadyplottedontheplan.SupposeA,B,\&C are the three points which have been plotted as $a, b, \& c$ on the plan \& the t ableissetupatTfromwhichA,B,\&Carevisible.Itisrequiredtoplotonthe planthepositiontoftheinstrumentstationT.

Theproblemmaybesolvedby(1)Mechanically(2)Graphically(Bessel's
method)\&(3)bytrial\&errormethod
i. Aftersetting\&levelingthetable,thealidadeisplacedalongthelineca $\&$ the board turned until A is sighted being towards A. the table isthen clamped. With the alidade centered on C, B is sighted \& a ray CB is drawnalongtheedgeofthealidade.
ii. When the alidade placed along ac, the board is turned until the line of sight bisects c, c being towards C \& then clamped. With the alidade touchinga,Bissighted\&arayaBisdrawnthrougha;intersectingthe raypreviouslydrawnthroughinthepointd.
iii. With the alidade along bd, the table is turned until B is bisected \&then clamped. The table is now oriented \& t must lie on db\& also on Aa \&
Cc. with the alidade centered on a, A is bisected $\&$ a lay is drawn through a, intersecting the ray bdin t, which represent the instrument

To check the orientation, the alidade is pivoted on $c \& C$ is pisected.TherayCcshouldnowpassthrought,iftheworkiscorrect.

RESULT: The location of the station on given point is found on sheet. stationT.

$$
\text { | | } \mid \text { | }
$$

AIM:-Determinationofelevationofpointbytrigonometriclevelling.
Theory:- Trigonometrical leveling is the process of determining the difference of elevation of station from observed vertical angles and known distances, which are assumed to be either horizontal or geodetic length at mean sea level. The vertical angles may be measured by means of an accurate theodolite and the horizontal distancesmayeitherbemeasured(incaseofplanesurveying)orcomputed(incase geodeticobservation)

Base of the object accessible:-

Height and Distances

1) Baseoftheobjectaccessible.:-Thehorizontaldistancebetweentheinstrumentand theobjectcanbemeasuredaccurately.

Let $\mathrm{P}=$ instrumentstation.
Q=Point to be observed
$A=$ centreofthe instrument
$\mathrm{P}=\mathrm{AQ} \mathrm{A}^{\prime}=$ horizontal distance between $\mathrm{P} \& \mathrm{Q}$
$h^{\prime}=$ height of the instrument at P
$\mathrm{h}=\mathrm{QQ}^{\prime}$
$S=$ ReadingonstaffkeptatB.M,Withlineofsighthorizontal. $a=$ angleofelevationfromA toQ
From triangle $A Q Q^{\prime}, \mathrm{h}=\mathrm{Dtana}$
R.LofQ=R.Lofinstrumentaxis+Dtana

IftheR.L.ofPisknown,
R.L. of $\mathrm{Q}=$ R.L of $\mathrm{P}+\mathrm{h}^{\prime}+$ Dtana

If the reading on the staff kept at the B.M. is S with the line of sight horizontal.
R.L of $Q=$ R.L. of $B . M+S+D t a n a$
2) Baseoftheobjectinaccessible:-ifthehorizontaldistancebetweentheinstrument andtheobjectcanbemeasuredduetoobstraclesetc.,twostationsareusedsothatthey areinthesameverticalplaneastheelevatedobject.

a) Instrumentaxesatthesamelevel:-

```
_eth=QQ',a1 = angleofelevationfromAtoQ,a2=angleofelevationfromBtoQ
S=staffreadingonB.MtakenfrombothAandB,thereadingbeingthesameinthe
poththecases.b=horizontaldistancebetweentheinstrumentstations,
P= horizontal distance betweenP&Q
FromtriangleAQQ',h=Dtana1(1)
FromtriangleBQQ',h=(b+D)tana2

Equating (1) and (2), we get,
Dtana1 \(=(b+D)\) tana2
P(tana1-tana2)=btana2
\(P=\quad \begin{aligned} & \text { an } \alpha_{1}-\tan \alpha_{2} \\ & h=D \tan \alpha_{2} \\ & b \tan \alpha_{1} \tan \alpha_{2}\end{aligned}\)
\(\operatorname{an} \alpha_{1}-\tan \alpha_{2}\)
\(b \sin \alpha_{1} \sin \alpha_{2}\) \(\qquad\)
\(\sin \left(\alpha_{1}-\alpha_{2}\right)\)
R.L. of \(Q=R . L\) of B.M. \(+S+h\)

Procedure:-
1) SetupthetheodoliteatPandlevelitaccuratelywithrespecttothealtitude bubble.
2) DirectthetelescopetowardQandbisectitaccurately.Clampboththeplanes.

Read the vertical anglea1.
stationRontheground.MeasuredthedistanceRPaccurately.Repeatsteps(2) and(3)forbothfaceobservation.Themeanvaluesshouldbeadopted.
4) Withtheverticalverniersettozeroreading,andthealtitudebubbleinthecentreof therun,takethereadingonthestaffkeptatnearbyB.M.
5) ShifttheinstrumenttoRandsetupthetheodolitethere.Measuredthevertical anglea2toQwithbothfaceobservations.
6) Withtheverticalverniersettozeroreading,andthealtitudebubbleinthecentreof therun,takethereadingonthestaffkeptatthenearbyB.M.

Observation table:-
\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Instrument \\
Station
\end{tabular} & \begin{tabular}{ll} 
R.L@ \\
B.M
\end{tabular} & \begin{tabular}{l} 
Reading on \\
staff keptat \\
B.M.
\end{tabular} & \begin{tabular}{l} 
Vertical \\
angle (a)
\end{tabular} & \begin{tabular}{l} 
Horizontal \\
distance between \\
instrument \\
station and \\
object
\end{tabular}
\end{tabular} \begin{tabular}{l} 
R.L o f \\
the object
\end{tabular}

Result:-theelevationoftheobjectfromtheB.Misfoundtobe

AIM : Counter plan of given area (Oe full size drawing sheet)
APPARATUS:Autolevel,prismaticcompass,chain20m,30m,metallic Tape, ranging road Leveling staff, pegs line.

THEORY:
CONTOURING: The elevation and depression the undulations of the surface of the ground are shown as map by interaction of level surface with by means of contour line. a contour may be defined as the line of intersection of a level surfacewiththesurfaceoftheground.

Characteristics of CounterLines
The following are the Characteristics of the contours/ contour lines.
1) Allpointsonthesamecontourlinewillhavethesameelevation.
2) Contourlinesclosetogetherrepresentsteepground,whileuniformslopeisindicated when they are uniformly spaced. A series of straight, parallel and equally spaced contoursshowaplaneorflatsurface.
3) Contourlinesofdifferentelevationcannotmergeorcrossoneanotheronthemap, expectinthecaseofanoverhangingcliff.Averticalcliffisindicatedwhenseveral contourscoincide[seefig1.1(a)and(b)]

5) Series of closed contour lines on the map either represent a hill or a depression accordingasthehigherorlowervaluesareinsidethemasshowninfigs[1.2(a)and (b)

6) Acontourwillnotstopinthemiddleoftheplan.Itwilleithercloseorgooutofthe plan.
7) Ridgeorwatershadandvalleylinesarethelinesjoiningthetopmostorthebottom mostpointsofhillandvalleyrespectively,crossthecontoursatrightangles.Aridge lineisshownwhenthehighervaluesareinsidetheloop,whileinthecaseofavalley line,thelowervaluesareinsidetheloopasshowninfig(1.3)


Fig. 1.3. Ridge and valley line
8) Contour lines are not drawn across the water in the stream or river because the waterlevelintheitisnotconstant;butcontoursaredrawnalongthebedofariveror astream.


Uses of contour map
1) Forpreparingcontourmapinordertoselectthemosteconomicalorasuitablesite.
2) For getting the importance about ground whether it is undulating or mountainous
construction will be economical and will command maximum irrigated area.
4) Tomakethealignmentfortheroad,railwaysothatthequantityofearthwork bothincuttingandfillingshouldbeminimum.
5) To find out the capacity of the reservoir or a volume of earthwork especially in the Mountainousregion.
6) Forpreparingcontourmapinordertoselectthemosteconomicalorsuitable site.
7) Asitsdefinitionitselfindicatesthelinejoiningthepointsofsameelevationthat

Meansitnaturallypreferstheconditionofnatureofgrounditself.
8) Itisalsousedforirrigationpurposeasfromitcapacityofreservoirisshown.

\section*{LOCATING CONTOURS:}
a) By cross-sectionmethod:

Thismethodiscommonlyusedinroughsurvey,crosssectionsareruntraverseto the contour line of road, and railway as canal and the point of change of slope (representations) are ocated. The cross-section line may be inclined at any angleTo the centerline if necessary. The spacing of the cross sections depends upon the characteristics of theground.

By interpolation of contour is meant the process of spacing the contour proportioning between the plotted ground points. Contour may be interpolated by
1) Estimation
2) Arithmeticalcalculations
3) Graphicalmethod.inallthesemethods
uniform.
RESULT: The contour of given land is drawn in the sheet.

:StudyofPlanimeterA
PPARATUS : Planimeter
FIGURE


Planimeter : A Planimeteris a mechanical integrator is used by engineer for measuring areaoffigurewhichisbeenplottedscaleparticularlywhentheboundariesare rregulararecurvedmathematicallyitisdifficulttofindtheareaofsuchirregular figures.Planimeterislargelyusedforfindingtheareasofcontourindetermining the capacity of storageserver.

Construction:TheseareseveraltypesofPlanimeterbuttheamplerpolarPlanimeterisin mostcommonuse\&isdescribedas-

It consists of two arms hinged at a point one is known is anchor arm \&it is at fixedlength.Ithasaneedlepointcalledtheanchorpointwhichisfixedinpaper\&hold npositionbydetachablesmallweighttheotherarmiscalledtrussingarm.itcarriesa tracing point which is moved along the periphery of the figure of which the area is to befoundout.Tracingarmisadjustableislengththetracingarmissettopositiongiven by the manufacturer according to scale used the total normal displacement is
measured b rolling wheel. The rolling wheel carries graduated drum divided into 100

\section*{|11T日 asar}
connected by gears is the counting disc. The counting disc measure one revolution at every10turnsoftherollingwheeleachcompletereadingisafigureoffourdigits.The zeroofrollingwheelisappositetothezeroatveriner.Actuallythemarksofriseshould beoppositetoindexmarkduetoimperfectionofthewheelgear.
nstrumentisequippedwithmagnifyinglancetoreadvernier\&acheckbarorflatbar for testing thePlanimeter.

Reading on Planimeter:
Each complete reading on Planimeteris a figure of digits. Let the reading be 4.375 thefirstdigit4 \(=\quad\) isreadonthedisctheseconddigit3isreadontherollingwheel(main scale)thethirddigit7isreadonthefallingwheel(mainscale)\&thelastisfourthdigit5 sreadonthevernierscalebesidethemainscaleofrollingwheelpositionofmeasuring unit(settingoftracingarm)thepositionoftracingarmisadjustableaccordingtogiven positionbythemanufactureforthedifferentscalar.Thepositionofmeasuringunitwill be vary from instrument to the index mark on the beveled edge of the tracing arm of thefiguremaybeobtaineddirectlyinm²orhectorsbymarkinguseofmultiplyingscale factor. Method of usingPlanimeter:

The Planimeter is used in determining the areas of the figure in 2 ways.
1) Byplacingtheanchorpointoutsidethefigure.
2) Byplacingtheanchorpointinsidethefigure.

Procedure: 1) Set out the index arm on the tracing arm to the given scale as per manufacturesinstructionexactlybusingclamp\&finemotionscrew.Stretchthesheet makingfreefromwrinkleness.

Mark the points on the boundaries of the figure \& set tracing arm exactly over it.
3) Nowtaketheinitialreadingi.e.thereadingondial\&wheel\&vernier.
4) Movethetracingpointalongtheperipheryofthefigure\&stopatthestartingpoint.
5) While tracing point is moved note the number of times the zero index mark in clockwise \& anticlockwise direction. Again take the reading of on dial wheel \&vernier that will be finalreading.
6) Thecalculatedarea(A) \(=m(F R-I R+10 N+C)\)

Where, \(\mathrm{M}=\) multiplying constant which is different scales
\(N=\) numberoftimesthezeroofdialpassesthefixedindexmarkusethe+vesignwhen movesclockwise\&-vesignmovesanticlockwise.

C=constantofinstrumentsuppliedbymanufacture\&differentfordifferentscales\&itis
pffsetwhenanchorpointiskeptinsideotherwiseitistakenzeroifitiskeptoutside.
\(\mathrm{FR}=\) Final reading.
\(B=\) Initialreading.
Area of the zero circles i.e. Mc is defined as the correction circle which is defined as a circle found the circumference at which if the tracing point is moved wheel will slide without rotation in a reading. This is possible when tracing arm is placed in such a position relative to the anchor of arm that the plane of the roller passes thought the anchored point the multiply constant of Planimeter is equal to the number of unit of area per revolution of the oller.

RESULT: - Planimeter has been used to measured irregular figure.


The procedure is common for both the above cases.
1) Setouttheindexarmonthetracingarm(positionofmeasuringunit),togivenscale aspermanufacturesinstruction,exactlybyusingtheclampandfinemotionscrew.
2) Stretchthemapsheetuntilitisflatandfreefromwrinkles.
3) Fixtheanchorpointfirmlyinthepaperoutsideorinsidethefigureaccordingasthe figureissmallorlarge.
4) Markapointontheboundaryofthefigureandsetthetracingpointexactlyoverit.
5) Now take initial reading (I.R) as described previously, reading the dial, wheel and vernier.Itisnotnecessarytosetthedialandwheeltozero.
6) Move the tracing point exactly around the boundary, always in clockwise direction usingonehandtokeepthepointexactlyon theboundaryandthe otherhandtokeep theanchorpointfrommoving,stopexactlyatthestartingpoint.
7) While tracing point is moved along the boundary of the figure, note the number of times the zero mark in clockwise or anticlockwise direction. Again take the reading of dial,wheelandvernierrecording itasthefinalreading(F.R).Theareaofthefigureis then calculated by using the followingformula.

The calculated area \((A)=m(F R-I R+10 N+C)\)

Where,M=multiplyingconstantwhichisdifferentfordifferentscalesandsuppliedinthe nstructionsheetbythemanufacture.Itisequaltotheareaofonerevaluationofthe wheel .eunitarea.
F.R. = thefinalreading I.R=
the initial reading
moves clockwise \& -ve sign moves anticlockwise.
\(\mathrm{C}=\) constantofinstrumentsuppliedbymanufacture\&differentfordifferentscales\&itis offsetwhenanchorpointiskeptinsideotherwiseitistakenzeroifitiskeptoutside.

Area of the zero circles i.e. Mc is defined as the correction circle which is defined as a circle found the circumference at which if the tracing point is moved wheel will slide without rotation in a reading. This is possible when tracing arm is placed in such a position relative to the anchor of arm that the plane of the roller passes thought the anchored point the multiply constant of Planimeter is equal to the number of unit of area per revolution of the roller.

Observation table:-
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c} 
Position of \\
anchor point
\end{tabular} & \begin{tabular}{l} 
Initial \\
Reading
\end{tabular} & \begin{tabular}{l} 
Rinal \\
Reading
\end{tabular} & Value of & Remark \\
\hline & & & & \\
\hline
\end{tabular}

Result:Theareaofirregularfigureisfoundtobe-------------- Sq-m


Theobserverstandsatoneendoftheslope\&directtheinstrumentontothe markallvanefixedontherangingrodatthesameheightastheobserverwheeluntil thereflectedimageofthebubbleisbroughttothecentreofitsrun\&intersectedby thecrosswirethebubbletubeisnowhorizontalwhilethetelescopeisparalleltothe slopeoftheground.Theanglereadonthearcgivestheslopeoftheground.

To trace the grade contour:-
Withthehelpoftheverniertherollinggradientcanbeobtainedmarktheheight of the observer on the ranging rod. Direct the instrument towards the mark on the fangingrodheldattheconvenientdistanceray30-50metertherangingrodisthen moved upward downward until the observer bisect the vane with cross hair \& simultaneously over the pubbled centered is the instrument station to the point on whichrangingrodisheldparalleltothispoint\&repeattheprocesstoestablishthe hextpointtheprocessiscontinueduntilthelastpointisestablished.

Iftheabneylevelisnotgivingcorrectvaluesofangleofinclinationofthereis difference of two pbservations then adjust the instrument to the mean value. i.e.
(T1+T2/2)lighttheobject\&centrethebubblebymeansofadjustingscrewofthe bubbletube. to oneminute.

Construction: - it consist of -

\section*{ii. Aboxabout \(7.5 \mathrm{cmindia} \& 4 \mathrm{cmind}\) ppth} iii. Acoverwhichserverasahandlewhenoccurredtothebottom.
iv. Ahorizontalglasshavingthelowerhalf\&thenipperthalf.
v. An index glasswhblly.
vi. AOliverallgraduatedfrom \(0^{\circ}\) to \(140^{\circ}\) degrees\&halfdegrees.
vii. Anindexarmcarriesavernierwhichreadstosingleminute.
viii. An adjustable magnifyingg|ass.
ix. Amilledhandlescrewtorotatetheindexglass\&indexarm.
x. Aneyeholeinaslidingarm.
xi. A pair of colored glasses for use when observations are taken on the brought objectorthesun.
xiii. Aslotinthesideoftheboxthroughwhichentreestheraysfromtheobjectsighted.
xiv. Abayforadjustingtheinstrument.

Uses:-Theboxsextantisacompacthandinstrumentbysettingthevernierto90itmay be used as a optical square \(\&\) therefore after included in the instrument (equipment)Forachainsurveyitisveryusefulformeasuringchainangles. Locating inaccessible point at measuring angles for checking purpose.

PROCEDURE:-
Whenmeasuringanglesbetweenthetwoobjectsatastationholdtheinstrument stherighthandoverthestation\&lookthroughtheeyelensesatthelefthandobject through the lower position of the horizontal angle. The middle headed screw slowly untiltheimageoftherighthandobjectseenistheuppersilveredhalfofthehorizon glassiswithlefthand.

Note- the reading of vernires which gives the value of the required angle.

RESULT:- Abney level, Box sextant isstudied.

AIM :TogiveLayoutforgivenplanofbuilding.
Equipment: Pegs, Nails ,Lime, Wooden Mallet


Theory: - When plans are ready for the works, the works are robe executed .To startwithanystructurefirstofall,trenchesforthefoundationaretoexcavated.To excavate these trenches, the outline of excavation are defined on the ground,the processofdefiningtheoutlinesoftheexcavationonthegroundisknownassetting putofworksorliningoutofworks.
ine,theplanshowingthewidthofthefoundationtrench,forvariouswalls,distance of the corners from some definite line etc. is required. This plan called foundation plan (Fig). The distances and they are with reference to lines \(A B\) and AF. PROCEDURE:-

Tostartwiththesettingoutofbuilding,firstofallapointAisfixedandthenline \(A B\) is oriented in the equired direction.Thus having fixed the direction of the line \(A B\), two pegs \(A\) and \(B\) are driven at distance of 12.25 m , apart (This distance calculated from the plan). Wire nails are driven at the centers of the pegs. Again the distance between the wire nails is checked and which should be equal to 12.25 m . A cord is stretched along \(A B\) and ends are secured to these wire nails at Aand \(B\), perpendicular \(A F^{\prime}\) and \(B C^{\prime}\) are setout. Perpendicular may be set with a tapeby3-4-5methodortheodolitemaybeusediftheworkisimportant.AlongAF' andBC',pointFandCarefixedat12.80mand10.30m,fromA\&Brespectively.Theperpendicular are then set at C and F and point D and E are fixed along \(\mathrm{CD}^{\prime}\) and \(\mathrm{FE}^{\prime}\) at a calculated distance from C and F respectively . The stakes are driven at thesepointC,D,E,andFandwirenailsaredrivenatthecentersofthesestakes.A cordisstretchedallalongABCDEF.

To check up the work, the diagonal \(A E, A D, b F\), and \(B d\) are actuallymeasured and these measured values should agree with their corresponding calculated lengths. Otherwise the setting out work should be repeated and stakes should be refixed at their correct positions.

AfterfixingupallthepegsandstretchingthecordthecornersM,N,Petcand \(m, n, p\) etc. are to be located. The point \(A\) is considered as the origin and thelines
etc., and m, \(n, p\), etc. are calculated with reference to \(A\) as origin .
ForexampleCo-ordinatesofM.N.Pare(2,2),(2,10.25)and(10.25,2)respectivelyand thoseform,n,pare \((3.35,3.35),(3.35,8.90)\) and( \(8.90,3.35)\) repectively.Withthesecoprdinates,pointM,N,P,m,n,petc.,aresetandpegsaredrivenatthesepoints.The cord are stretched around the wire nails at \(M, N, P, Q, R, S\) and \(m, n, p, r, s\) indicating peripheries.Theoutlineoftheperipheriesaremarkedwithlimespread.

Nowthelimelinesonthegroundindicatethetrenchesforthevariouswallsandthe excavationmaybestarted.ifduringtheprogressofthework,thelinesmarkedare disturbed,itmaybecheckedorresetwithhelpofreferencelineABCDEF.```

